http://www.cnr.it/ontology/cnr/individuo/prodotto/ID206796
Recommendations for the long tail by Term-Query Graph (Abstract/Poster in atti di convegno)
- Type
- Label
- Recommendations for the long tail by Term-Query Graph (Abstract/Poster in atti di convegno) (literal)
- Anno
- 2011-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1145/1963192.1963201 (literal)
- Alternative label
Bonchi, Francesco; Perego, Raffaele; Silvestri, Fabrizio; Vahabi, Hossein; Venturini, Rossano (2011)
Recommendations for the long tail by Term-Query Graph
in 20th international conference companion on World Wide Web, WWW'11, Hyderabad, India, 28 March - 1 April 2011
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Bonchi, Francesco; Perego, Raffaele; Silvestri, Fabrizio; Vahabi, Hossein; Venturini, Rossano (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
- Area di valutazione 01 - Scienze matematiche e informatiche
ID_PUMA: /cnr.isti/2011-A6-009 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
- http://dl.acm.org/citation.cfm?id=1963201&CFID=74367916&CFTOKEN=80133412 (literal)
- Note
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Yahoo Research, Barcelona; CNR-ISTI, Pisa; IMT, Lucca, Italy (literal)
- Titolo
- Recommendations for the long tail by Term-Query Graph (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
- 978-1-4503-0637-9 (literal)
- Abstract
- We define a new approach to the query recommendation problem. In particular, our main goal is to design a model enabling the generation of query suggestions also for rare and previously unseen queries. In other words we are targeting queries in the long tail. The model is based on a graph having two sets of nodes: Term nodes, and Query nodes. The graph induces a Markov chain on which a generic random walker starts from a subset of Term nodes, moves along Query nodes, and restarts (with a given probability) only from the same initial subset of Term nodes. Computing the stationary distribution of such a Markov chain is equivalent to extracting the so-called Center-piece Subgraph from the graph associated with the Markov chain itself. Given a query, we extract its terms and we set the restart subset to this term set. Therefore, we do not require a query to have been previously observed for the recommending model to be able to generate suggestions. (literal)
- Editore
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Autore CNR di
- Prodotto
- Editore di
- Insieme di parole chiave di