Clustering based on the geodesic distance on Gaussian manifolds for the automatic classification of disruptions (Articolo in rivista)

Type
Label
  • Clustering based on the geodesic distance on Gaussian manifolds for the automatic classification of disruptions (Articolo in rivista) (literal)
Anno
  • 2013-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1088/0029-5515/53/3/033006 (literal)
Alternative label
  • A. Murari; P. Boutot; J. Vega; M. Gelfusa; R. Moreno; G. Verdoolaege; P.C. de Vries; JET-EFDA Contributors (2013)
    Clustering based on the geodesic distance on Gaussian manifolds for the automatic classification of disruptions
    in Nuclear fusion; International Atomic Energy Agency, Vienna (Austria)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • A. Murari; P. Boutot; J. Vega; M. Gelfusa; R. Moreno; G. Verdoolaege; P.C. de Vries; JET-EFDA Contributors (literal)
Pagina inizio
  • 033006 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
  • IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY; Article Number: 033006; La rivista è pubblicata anche online con ISSN 1741-4326. (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://iopscience.iop.org/0029-5515/53/3/033006/ (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 53 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 9 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 3 (literal)
Note
  • ISI Web of Science (WOS) (literal)
  • Scopu (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon, UK; / 1 : Consorzio RFX-Associazione EURATOM ENEA per la Fusione, I-35127 Padova, Italy; / 2 : Ecole Polytechnique de Palaiseau, Paris, France; / 3,5 : Asociación EURATOM/CIEMAT para Fusión. Avda. Complutense, 22. 28040 Madrid, Spain; / 4 : Associazione EURATOM-ENEA, University of Rome 'Tor Vergata', Roma, Italy; / 6 : Department of Applied Physics, Ghent University, Ghent, Belgium; / 7 : FOM institute DIFFER, Association EURATOM-FOM, PO Box 1207, 3430BE Nieuwegein, The Netherlands. (literal)
Titolo
  • Clustering based on the geodesic distance on Gaussian manifolds for the automatic classification of disruptions (literal)
Abstract
  • Over the last few years progress has been made on the front of disruption prediction in tokamaks. The less forgiving character of the new metallic walls at JET emphasized the importance of disruption prediction and mitigation. Being able not only to predict but also classify the type of disruption will enable one to better choose the appropriate mitigation strategy. From this perspective, a new clustering method, based on the geodesic distance on a probabilistic manifold, has been applied to the JET disruption database. This approach allows the error bars of the measurements to be taken into account and has proved to clearly outperform the more traditional classification methods based on the Euclidean distance. The developed technique with the highest success rate manages to identify the type of disruption with 85% confidence, several hundreds of ms before the thermal quench. Therefore, the combined use of this method and the more traditional disruption predictors would significantly improve the mitigation strategy on JET and could contribute to the definition of an optimized approach for ITER. (literal)
Editore
Prodotto di
Autore CNR

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Editore di
data.CNR.it