Finding and characterizing communities in multidimensional networks (Contributo in atti di convegno)

Type
Label
  • Finding and characterizing communities in multidimensional networks (Contributo in atti di convegno) (literal)
Anno
  • 2011-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1109/ASONAM.2011.104 (literal)
Alternative label
  • Berlingerio M. Coscia M. Giannotti F. (2011)
    Finding and characterizing communities in multidimensional networks
    in The 2011 International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2011, Kaohsiung, Taiwan, 25-27 July 2011
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Berlingerio M. Coscia M. Giannotti F. (literal)
Pagina inizio
  • 490 (literal)
Pagina fine
  • 494 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
  • Area di valutazione 01 - Scienze matematiche e informatiche (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5992619 (literal)
Note
  • PuMa (literal)
  • Scopu (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • CNR-ISTI, Pisa, Italy; Dipartimento di Informatica, Università di Pisa, Italy (literal)
Titolo
  • Finding and characterizing communities in multidimensional networks (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
  • 978-1-61284-758-0 (literal)
Abstract
  • Complex networks have been receiving increasing attention by the scientific community, also due to the availability of massive network data from diverse domains. One problem studied so far in complex network analysis is Community Discovery, i.e. the detection of group of nodes densely connected, or highly related. However, one aspect of such networks has been disregarded so far: real networks are often multidimensional, i.e. many connections may reside between any two nodes, either to reflect different kinds of relationships, or to connect nodes by different values of the same type of tie. In this context, the problem of Community Discovery has to be redefined, taking into account multidimensionality. In this paper, we attempt to do so, by defining the problem in the multidimensional context, and by introducing also a new measure able to characterize the communities found. We then provide a complete framework for finding and characterizing multidimensional communities. Our experiments on real world multidimensional networks support the methodology proposed in this paper, and open the way for a new class of algorithms, aimed at capturing the multifaceted complexity of connections among nodes in a network. (literal)
Editore
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Editore di
Insieme di parole chiave di
data.CNR.it