http://www.cnr.it/ontology/cnr/individuo/prodotto/ID203805
Motor simulation via coupled internal models using sequential Monte Carlo (Contributo in atti di convegno)
- Type
- Label
- Motor simulation via coupled internal models using sequential Monte Carlo (Contributo in atti di convegno) (literal)
- Anno
- 2011-01-01T00:00:00+01:00 (literal)
- Alternative label
Dindo, Haris ; Zambuto, Daniele ; Pezzulo, Giovanni (2011)
Motor simulation via coupled internal models using sequential Monte Carlo
in Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, 16-22 July 2011, Barcelona, 16-22 July 2011
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Dindo, Haris ; Zambuto, Daniele ; Pezzulo, Giovanni (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
- ID_PUMA: /cnr.istc/2011-A2-012. - Area di valutazione 01 - Scienze matematiche e informatiche
ID_PUMA: cnr.ilc/2011-A2-012 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Consiglio Nazionale delle Ricerche ILC-CNR and ISTC-CNR (literal)
- Titolo
- Motor simulation via coupled internal models using sequential Monte Carlo (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#curatoriVolume
- Abstract
- We describe a generative Bayesian model for action understanding in which inverse-forward internal model pairs are considered 'hypotheses' of plausible action goals that are explored in parallel via an approximate inference mechanism based on sequential Monte Carlo methods. The reenactment of internal model pairs can be considered a form of motor simulation, which supports both perceptual prediction and action understanding at the goal level. However, this procedure is generally considered to be computationally inefficient. We present a model that dynamically reallocates computational resources to more accurate internal models depending on both the available prior information and the prediction error of the inverse-forward models, and which leads to successful action recognition. We present experimental results that test the robustness and efficiency of our model in real-world scenarios. (literal)
- Editore
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Autore CNR di
- Prodotto
- Editore di
- Insieme di parole chiave di