http://www.cnr.it/ontology/cnr/individuo/prodotto/ID201037
Asymptotic Behavior of Two Series Used for the Evaluation of Kirchhoff Diffractals (Articolo in rivista)
- Type
- Label
- Asymptotic Behavior of Two Series Used for the Evaluation of Kirchhoff Diffractals (Articolo in rivista) (literal)
- Anno
- 2011-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1109/TAP.2011.2143673 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Perna S 1,2 ; Iodice A 3 (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
- Note
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- 1 Univ Napoli Parthenope, Dipartimento Tecnol DIT, Ctr Direz, I-80143 Naples, Italy; 2 Italian Natl Res Council CNR, IREA, I-80124 Naples, Italy;
3 Univ Naples Federico 2, DIBET, I-80125 Naples, Italy (literal)
- Titolo
- Asymptotic Behavior of Two Series Used for the Evaluation of Kirchhoff Diffractals (literal)
- Abstract
- Use of the Kirchhoff approximation allows expressing the electromagnetic power density scattered by fractal surfaces via two series expansions. Unfortunately, practical use of these two series may be problematic mainly due to the limitations imposed by the finite precision of the computers. In particular, it has been shown that to noticeably increase the region of practical applicability of such two series expansions, use of the theory of asymptotic expansions is strictly required. However, although in the literature it is usually assumed that the aforementioned two series can be seen as asymptotic expansions of the scattering integral, a rigorous proof of this has not been provided yet, and it represents the aim of this work. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di