Charged-phonon theory and Fano effect in the optical spectroscopy of bilayer graphene (Articolo in rivista)

Type
Label
  • Charged-phonon theory and Fano effect in the optical spectroscopy of bilayer graphene (Articolo in rivista) (literal)
Anno
  • 2012-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1103/PhysRevB.86.115439 (literal)
Alternative label
  • E. Cappelluti (1,2); L. Benfatto (2,3); M. Manzardo (4); A. B. Kuzmenko (5) (2012)
    Charged-phonon theory and Fano effect in the optical spectroscopy of bilayer graphene
    in Physical review. B, Condensed matter and materials physics
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • E. Cappelluti (1,2); L. Benfatto (2,3); M. Manzardo (4); A. B. Kuzmenko (5) (literal)
Pagina inizio
  • 115439 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://link.aps.org/doi/10.1103/PhysRevB.86.115439 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 86 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 11 (literal)
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • 1 Instituto de Ciencia de Materiales de Madrid, CSIC, Madrid, Spain 2 Institute for Complex Systems, U.O.S. Sapienza, CNR, Roma, Italy 3 Dipartimento di Fisica, Università \"La Sapienza,\" Roma, Italy 4 Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstr. 20, 01069 Dresden, Germany 5 DPMC, Université de Genève, 1211 Genève, Switzerland (literal)
Titolo
  • Charged-phonon theory and Fano effect in the optical spectroscopy of bilayer graphene (literal)
Abstract
  • Since their discovery, graphene-based systems represent an exceptional playground to explore the emergence of peculiar quantum effects. The present paper focuses on the anomalous appearance of strong infrared phonon resonances in the optical spectroscopy of bilayer graphene and on their pronounced Fano-like asymmetry, both tunable in gated devices. By developing a full microscopic many-body approach for the optical-phonon response we explain how both effects can be quantitatively accounted for by the quantum interference of electronic and phononic excitations. We show that the phonon modes borrow a large dipole intensity from the electronic background, the so-called charged-phonon effect, and at the same time interfere with it, leading to a typical Fano response. Our approach allows one to disentangle the correct selection rules that control the relative importance of the two (symmetric and antisymmetric) relevant phonon modes for different values of the doping and/or of the gap in bilayer graphene. Finally, we discuss the extension of the same theoretical scheme to the Raman spectroscopy, to explain the lack of the same features on the Raman phononic spectra. Besides its remarkable success in explaining the existing experimental data in graphene-based systems, the present theoretical approach offers a general scheme for the microscopic understanding of Fano-like features in a wide variety of other systems. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it