Analysis of a Diesel engine combustion using imaging and independent component analysis (Articolo in rivista)

Type
Label
  • Analysis of a Diesel engine combustion using imaging and independent component analysis (Articolo in rivista) (literal)
Anno
  • 2013-01-01T00:00:00+01:00 (literal)
Alternative label
  • Katarzyna Bizon, Simone Lombardi, Gaetano Continillo, Ezio Mancaruso, Bianca Maria Vaglieco (2013)
    Analysis of a Diesel engine combustion using imaging and independent component analysis
    in Proceedings of the Combustion Institute
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Katarzyna Bizon, Simone Lombardi, Gaetano Continillo, Ezio Mancaruso, Bianca Maria Vaglieco (literal)
Pagina inizio
  • 2921 (literal)
Pagina fine
  • 2931 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 34 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 11 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Katarzyna Bizon - Università del Sannio - Benevento, Italy Simone Lombardi - Università del Sannio - Benevento, Italy Gaetano Continillo - Università del Sannio - Benevento, Italy (literal)
Titolo
  • Analysis of a Diesel engine combustion using imaging and independent component analysis (literal)
Abstract
  • This paper reports on the first attempt of application of independent component analysis (ICA) to 2D images of combustion-related luminosity. The images are acquired from an optically accessible Diesel engine equipped with the common rail injection system and cylinder head of a most recent generation Euro 5 engine. The original data, from a sequence of crank-angle resolved images, are treated by ICA in order to identify leading independent structures. Two main independent components (IC) are extracted from sets of luminosity images, and the coefficients of the ICs are then used for further analysis, to study the transient during a single cycle, and for the assessment of cycle variability, along with data of dynamic in-cylinder pressure, rate of heat release and integral luminosity. In the analysis of a single cycle, the two independent components appear to be clearly separated and related to combustion events near the fuel jets and near the bowl walls, respectively. The analysis over the cycles separates the mean combustion luminosity field at each crank angle from the random, erratic flame structures related to cycle variability. Quantitative analysis of the statistics of the two independent components confirms the lower variability of the jet flames and the high variability of combustion near the chamber walls. This is in agreement with the idea that the extensive impingement of the fuel sprays on to the piston bowl walls in modern, high-speed, direct injection Diesel engines is responsible for increase of unburned hydrocarbons and smoke emissions. The developed procedure, including the ICA, is fast and reliable and can be prospectively applied to many different optical engine configurations. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it