Demonstration of two-qubit algorithms with a superconducting quantum processor (Articolo in rivista)

Type
Label
  • Demonstration of two-qubit algorithms with a superconducting quantum processor (Articolo in rivista) (literal)
Anno
  • 2009-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1038/nature08121 (literal)
Alternative label
  • Di Carlo L., Chow J.M. , Gambetta J.M., Bishop L., Schuster D.I., Majer J., Blais A., Frunzio L., Girvin S.M., and Schoelkopf R.J (2009)
    Demonstration of two-qubit algorithms with a superconducting quantum processor
    in Nature (Lond.); NATURE PUBLISHING GROUP,, LONDON (Regno Unito)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Di Carlo L., Chow J.M. , Gambetta J.M., Bishop L., Schuster D.I., Majer J., Blais A., Frunzio L., Girvin S.M., and Schoelkopf R.J (literal)
Pagina inizio
  • 240 (literal)
Pagina fine
  • 244 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 460 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 5 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 7252 (literal)
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Departments of Physics and Applied Physics, Yale University, New Haven, Connecticut 06511, USA. (literal)
Titolo
  • Demonstration of two-qubit algorithms with a superconducting quantum processor (literal)
Abstract
  • Quantumcomputers,which harness the superposition andentanglement of physical states, could outperform their classical counterparts in solving problems with technological impact--such as factoring large numbers and searching databases. A quantumprocessor executes algorithms by applying a programmable sequence of gates to an initialized register of qubits, which coherently evolves into a final state containing the result of the computation. Building a quantumprocessor is challenging because of the need tomeet simultaneously requirements that are in conflict: state preparation, long coherence times, universal gate operations and qubit readout. Processors based on a few qubits have been demonstrated using nuclear magnetic resonance, cold ion trap and optical systems, but a solid-state realization has remained an outstanding challenge. Here we demonstrate a two-qubit superconducting processor and the implementation of the Grover search and Deutsch-Jozsa quantum algorithms. We use a two-qubit interaction, tunable in strength by two orders of magnitude on nanosecond timescales, which is mediated by a cavity bus in a circuit quantum electrodynamics architecture. This interaction allows the generation of highly entangled states with concurrence up to 94 per cent. Although this processor constitutes an important step in quantum computing with integrated circuits, continuing efforts to increase qubit coherence times, gate performance and register size will be required to fulfil the promise of a scalable technology. (literal)
Editore
Prodotto di
Autore CNR

Incoming links:


Prodotto
Autore CNR di
Editore di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
data.CNR.it