http://www.cnr.it/ontology/cnr/individuo/prodotto/ID191023
Continuous Thermal Collapse of the Intrinsically Disordered Protein Tau Is Driven by Its Entropic Flexible Domain (Articolo in rivista)
- Type
- Label
- Continuous Thermal Collapse of the Intrinsically Disordered Protein Tau Is Driven by Its Entropic Flexible Domain (Articolo in rivista) (literal)
- Anno
- 2012-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1021/la302628y (literal)
- Alternative label
Ciasca, G (Ciasca, Gabriele)1; Campi, G (Campi, Gaetano)2; Battisti, A (Battisti, Anna)3,4; Rea, G (Rea, Giuseppina)2; Rodio, M (Rodio, Marina)1; Papi, M (Papi, Massimiliano)5; Pernot, P (Pernot, Petra)6; Tenenbaum, A (Tenenbaum, Alexander)1; Bianconi, A (Bianconi, Antonio)1 (2012)
Continuous Thermal Collapse of the Intrinsically Disordered Protein Tau Is Driven by Its Entropic Flexible Domain
in Langmuir; ACS, American chemical society, Washington, DC (Stati Uniti d'America)
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Ciasca, G (Ciasca, Gabriele)1; Campi, G (Campi, Gaetano)2; Battisti, A (Battisti, Anna)3,4; Rea, G (Rea, Giuseppina)2; Rodio, M (Rodio, Marina)1; Papi, M (Papi, Massimiliano)5; Pernot, P (Pernot, Petra)6; Tenenbaum, A (Tenenbaum, Alexander)1; Bianconi, A (Bianconi, Antonio)1 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- 1. Univ Roma La Sapienza, Phys Dept, I-00185 Rome, Italy
2. CNR, Inst Crystallog, I-00015 Monterotondo, Italy
3. CMM FBK, LISC, I-38123 Povo, Italy
4. Univ Trent, I-38123 Povo, Italy
5. Catholic Univ, Inst Phys, I-00168 Rome, Italy
6. ESRF, Struct Biol Grp, F-38043 Grenoble, France (literal)
- Titolo
- Continuous Thermal Collapse of the Intrinsically Disordered Protein Tau Is Driven by Its Entropic Flexible Domain (literal)
- Abstract
- The tau protein belongs to the category of Intrinsically Disordered Proteins (IDP), which in their native state lack a folded structure and fluctuate between many conformations. In its physiological state, tau helps nucleating and stabilizing the microtubules' (MTs) surfaces in the axons of the neurons. Tau is mainly composed by two domains: (i) the binding domain that tightly bounds the MT surfaces and (ii) the projection domain that exerts a long-range entropic repulsive force and thus provides the proper spacing between adjacent MTs. Tau is also involved in the genesis and in the development of the Alzheimer disease when it detaches from MT surfaces and aggregates in paired helical filaments. Unfortunately, the molecular mechanisms behind these phenomena are still unclear. Temperature variation, rarely considered in biological studies, is here used to provide structural information on tau correlated to its role as an entropic spacer between adjacent MTs surfaces. In this paper, by means of small-angle X-ray scattering and molecular dynamics simulation, we demonstrate that tau undergoes a counterintuitive collapse phenomenon with increasing temperature. A detailed analysis of our results, performed by the Ensemble Optimization Method, shows that the thermal collapse is coupled to the occurrence of a transient long-range contact between a region encompassing the end of the proline-rich domain P2 and the first part of the repeats domain, and the region of the N-terminal domain entailing residues 80-150. Interestingly these two regions involved in the tau temperature collapse belong to the flexible projection domain that acts as an entropic bristle and regulates the MTs' architecture. Our results show that temperature is an important parameter that influences the dynamics of the tau projection domain, and hence its entropic behavior. (literal)
- Editore
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Editore di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di