Global dynamics of a delayed SIRS epidemic model with a wide class of nonlinear incidence rates (Articolo in rivista)

Type
Label
  • Global dynamics of a delayed SIRS epidemic model with a wide class of nonlinear incidence rates (Articolo in rivista) (literal)
Anno
  • 2012-01-01T00:00:00+01:00 (literal)
Alternative label
  • Y. Enatsu ; E.Messina ; Y. Nakata ;Y. Muroya ; E. Russo; A. Vecchio (2012)
    Global dynamics of a delayed SIRS epidemic model with a wide class of nonlinear incidence rates
    in Applied mathematics and computation
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Y. Enatsu ; E.Messina ; Y. Nakata ;Y. Muroya ; E. Russo; A. Vecchio (literal)
Pagina inizio
  • 15 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 39 (literal)
Rivista
Note
  • Google Scholar (literal)
  • Scopu (literal)
  • athematical Reviews on the web (MathSciNet) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Enatsu,Department of Pure and Applied Mathematics, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan Messina, Russo, Dipartimento di Matematica e Applicazioni, Università Degli Studi di Napoli Federico II, Via Cintia, Napoli 80126, Italy Nakata, Basque Center for Applied Mathematics, Bizkaia Technology Park, Building 500, Derio 48160, Spain Muroya, Department of Mathematics, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan Vecchio, Ist. per Appl. Del Calcolo M. Picone Sede di Napoli-CNR, Via P. Castellino, Napoli 111-80131, Italy (literal)
Titolo
  • Global dynamics of a delayed SIRS epidemic model with a wide class of nonlinear incidence rates (literal)
Abstract
  • In this paper, by constructing Lyapunov functionals, we consider the global dynamics of an SIRS epidemic model with a wide class of nonlinear incidence rates and distributed delays ? h 0 p(?)f(S(t),I(t- ?))d? under the condition that the total population converges to 1. By using a technical lemma which is derived from strong condition of strict monotonicity of functions f(S,I) and f(S,I)/I with respect to S>=0 and I>0, we extend the global stability result for an SIR epidemic model if R 0>1, where R 0 is the basic reproduction number. By using a limit system of the model, we also show that the disease-free equilibrium is globally asymptotically stable if R 0=1 (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it