Moving-horizon state estimation for nonlinear systems using neural networks (Articolo in rivista)

Type
Label
  • Moving-horizon state estimation for nonlinear systems using neural networks (Articolo in rivista) (literal)
Anno
  • 2011-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1109/TNN.2011.2116803 (literal)
Alternative label
  • A. Alessandri; M. Baglietto; G. Battistelli; M. Gaggero (2011)
    Moving-horizon state estimation for nonlinear systems using neural networks
    in IEEE transactions on neural networks; IEEE-Institute Of Electrical And Electronics Engineers Inc., Piscataway (Stati Uniti d'America)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • A. Alessandri; M. Baglietto; G. Battistelli; M. Gaggero (literal)
Pagina inizio
  • 768 (literal)
Pagina fine
  • 780 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
  • Journal Q1 in Artificial Intelligence (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 22 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 13 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 5 (literal)
Note
  • ISI Web of Science (WOS) (literal)
  • Scopu (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • 1. Department of Production Engineering, Thermoenergetics, and Mathematical Models, University of Genoa, Genova 16129, Italy 2. Department of Communications, Computer and System Sciences, University of Genoa, Genova 16145, Italy 3. Dipartimento di Sistemi e Informatica, Universita' degli Studi di Firenze, Firenze 50139, Italy 4. Institute of Intelligent Systems for Automation, National Research Council of Italy, Genova 16149, Italy (literal)
Titolo
  • Moving-horizon state estimation for nonlinear systems using neural networks (literal)
Abstract
  • Moving-horizon (MH) state estimation is addressed for nonlinear discrete-time systems affected by bounded noises acting on system and measurement equations by minimizing a sliding-window least-squares cost function. Such a problem is solved by searching for suboptimal solutions for which a certain error is allowed in the minimization of the cost function. Nonlinear parameterized approximating functions such as feedforward neural networks are employed for the purpose of design. Thanks to the offline optimization of the parameters, the resulting MH estimation scheme requires a reduced online computational effort. Simulation results are presented to show the effectiveness of the proposed approach in comparison with other estimation techniques. (literal)
Editore
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Editore di
Insieme di parole chiave di
data.CNR.it