http://www.cnr.it/ontology/cnr/individuo/prodotto/ID183452
Quantum orthogonal planes:ISOq,r(N) and SOq,r(N) - bicovariant calculi and differential geometry on quantum Minkowski space (Articolo in rivista)
- Type
- Label
- Quantum orthogonal planes:ISOq,r(N) and SOq,r(N) - bicovariant calculi and differential geometry on quantum Minkowski space (Articolo in rivista) (literal)
- Anno
- 1999-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1007/s100529800968 (literal)
- Alternative label
P. Aschieri; L. Castellani; A.M. Scarfone (1999)
Quantum orthogonal planes:ISOq,r(N) and SOq,r(N) - bicovariant calculi and differential geometry on quantum Minkowski space
in European physical journal. C, Particles and fields (Print)
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- P. Aschieri; L. Castellani; A.M. Scarfone (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
- Note
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Theoretical Physics Group, Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley,
California 94720, USA;
Dipartimento di Scienze e Tecnologie Avanzate?, Universit?a di Torino and Dipartimento di Fisica Teorica and Istituto
Nazionale di Fisica Nucleare, Via P. Giuria 1, I-10125 Torino, Italy;
Dipartimento di Fisica, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy (literal)
- Titolo
- Quantum orthogonal planes:ISOq,r(N) and SOq,r(N) - bicovariant calculi and differential geometry on quantum Minkowski space (literal)
- Abstract
- We construct differential calculi on multiparametric quantum orthogonal planes in any dimension N. These calculi are bicovariant under the action of the full inhomogeneous (multiparametric) quantum group , and do contain dilatations. If we require bicovariance only under the quantum orthogonal group , the calculus on the q-plane can be expressed in terms of its coordinates , differentials and partial derivatives without the need of dilatations, thus generalizing known results to the multiparametric case. Using real forms that lead to the signature with n, n + 1, we find and bicovariant calculi on the multiparametric quantum spaces. The particular case of the quantum Minkowski space is treated in detail. The conjugated partial derivatives can be expressed as linear combinations of the . This allows a deformation of the phase-space where no additional operators (besides and ) are needed. (literal)
- Autore CNR
Incoming links:
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi