A dynamic 1-D model for a reciprocating active magnetic regenerator; influence of the main working parameters (Articolo in rivista)

Type
Label
  • A dynamic 1-D model for a reciprocating active magnetic regenerator; influence of the main working parameters (Articolo in rivista) (literal)
Anno
  • 2010-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1016/j.ijrefrig.2009.10.001 (literal)
Alternative label
  • Tagliafico G. a; Scarpa F. a; Canepa F. b (2010)
    A dynamic 1-D model for a reciprocating active magnetic regenerator; influence of the main working parameters
    in International journal of refrigeration; Elsevier Science Ltd., Oxford (Regno Unito)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Tagliafico G. a; Scarpa F. a; Canepa F. b (literal)
Pagina inizio
  • 286 (literal)
Pagina fine
  • 293 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 33 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 2 (literal)
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • a Department of Production, Thermal Engineering and Mathematical Models, DIPTEM, TEC, Via All'Opera Pia 15 A - (I), 16145 Genoa, Italy; b Department of Chemistry and Industrial Chemistry, DCCI, University of Genoa, Via Dodecaneso 31 - (I), 16146 Genoa, Italy (literal)
Titolo
  • A dynamic 1-D model for a reciprocating active magnetic regenerator; influence of the main working parameters (literal)
Abstract
  • Active Magnetic Regeneration (AMR) is a configuration that allows magnetic refrigeration to be suitable also for room temperature applications. This work is intended to detect, by means of a 1-D numerical model, the influence on the regenerator performances of the working condition ambient temperature (T(CURIE) +/- 20 K) and of the operating parameters fluid mass flow rate (utilization factor 0.5 divided by 3.5) and cycle frequency (0.1 divided by 0.6 Hz). Simulations show that, tuning the fluid mass flow rate, a gadolinium AMR (395 g, f = 0.25 Hz, Delta B = 1.7 T) can reach a maximum cooling capacity of 130 W and a 40 W cooling power over a temperature span of 30 K. A COP of 5 can also be achieved with a temperature span of 30 K and a cooling power of 35 W. Frequency has a weak influence on the AMR's COP, while the ambient temperature is crucial. The system loses the 60% of cooling capacity if the ambient temperature is 20 K away from the material Curie temperature. (literal)
Editore
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Editore di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it