Highly Controlled Dip-Coating Deposition of fct FePt Nanoparticles from Layered Salt Precursor into Nanostructured Thin Films: An Easy Way To Tune Magnetic and Optical Properties (Articolo in rivista)

Type
Label
  • Highly Controlled Dip-Coating Deposition of fct FePt Nanoparticles from Layered Salt Precursor into Nanostructured Thin Films: An Easy Way To Tune Magnetic and Optical Properties (Articolo in rivista) (literal)
Anno
  • 2012-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1021/cm2033492 (literal)
Alternative label
  • Marco Faustini, Aldo Capobianchi, Gaspare Varvaro, David Grosso (2012)
    Highly Controlled Dip-Coating Deposition of fct FePt Nanoparticles from Layered Salt Precursor into Nanostructured Thin Films: An Easy Way To Tune Magnetic and Optical Properties
    in Chemistry of materials; ACS, American chemical society, Washington, DC (Stati Uniti d'America)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Marco Faustini, Aldo Capobianchi, Gaspare Varvaro, David Grosso (literal)
Pagina inizio
  • 1072 (literal)
Pagina fine
  • 1076 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 24 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 6 (literal)
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Chimie de la Matière Condensée de Paris, UMR UPMC-CNRS 7574, Université Pierre et Marie Curie (Paris 6) Collège de France, 11 place Marcelin Berthelot, 75231, Paris, France ?Istituto di Struttura della Materia del Consiglio Nazionale delle Ricerche (ISM.CNR), Area della Ricerca Roma 1, via Salaria Km 29.300, 00015, Monterotondo Scalo, Rome, Italy (literal)
Titolo
  • Highly Controlled Dip-Coating Deposition of fct FePt Nanoparticles from Layered Salt Precursor into Nanostructured Thin Films: An Easy Way To Tune Magnetic and Optical Properties (literal)
Abstract
  • Nanostructured titania films containing hard magnetic FePt nanoparticles were obtained through impregnation and postannealing of salt layered precursor [Fe(H2O)(6)][PtCl6] nanocrystals. The impregnation was performed by a highly controlled dip-coating process into ethanol based solutions of the salt precursor. The bimetallic salt nanocrystals were formed upon evaporation of the solvent into the cavities of TiO2 template films. The salt was transformed into the hard magnetic Jet phase by annealing in reductive atmosphere at 400 degrees C a particularly low conversion temperature compared with those reported for other synthesis approaches. Two different titania templates were considered. In the first case, the impregnation of 3D mesoporous films was investigated in order to determine the influence of the deposition parameters on the amount of FePt nanoparticles embedded and the final optical and magnetic properties of the layers. In the second case, this approach was further extended to 2D heterogeneous nanoperforated films. The nanoparticles were selectively deposited into the perforations thanks to a prior functionalization of the titania template by the formation of hydrophobic/hydrophilic distinct domains. Interestingly, the coalescence between the magnetic particles was found to be limited due to the low conversion temperature. This procedure of positioning particles onto a 2D nanostructured support constitutes an easy and versatile bottom-up approach toward magnetic arrays with potential application in magnetic data storage devices. (literal)
Editore
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Editore di
Insieme di parole chiave di
data.CNR.it