Chapter 3: MHD stability, operational limits and disruptions (Articolo in rivista)

Type
Label
  • Chapter 3: MHD stability, operational limits and disruptions (Articolo in rivista) (literal)
Anno
  • 2007-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1088/0029-5515/47/6/S03 (literal)
Alternative label
  • Hender T.C.; J.C Wesley; J. Bialek; A. Bondeson; A.H. Boozer;R.J. Buttery; A. Garofalo; T.P Goodman; R.S. Granetz; Y. Gribov; O. Gruber; M. Gryaznevich; G. Giruzzi; S. Günter; N. Hayashi; P. Helander; C.C. Hegna; D.F. Howell; D.A. Humphreys; G.T.A. Huysmans;A.W. Hyatt; A. Isayama; S.C. Jardin; Y. Kawano; A. Kellman; C. Kessel; H.R. Koslowski; R.J. La Haye; E. Lazzaro; Y.Q. Liu; V. Lukash; J. Manickam;S. Medvedev;V. Mertens; S.V. Mirnov; Y. Nakamura; G. Navratil; M. Okabayashi; T. Ozeki; R. Paccagnella; G. Pautasso; F. Porcelli; V.D. Pustovitov;V. Riccardo; M. Sato; O. Sauter; M.J. Schaffer;M. Shimada;P. Sonato;E.J. Strait;M. Sugihara; M. Takechi; A.D. Turnbull; E. Westerhof; D.G. Whyte; R. Yoshino; H. Zohm; (2007)
    Chapter 3: MHD stability, operational limits and disruptions
    in Nuclear fusion
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Hender T.C.; J.C Wesley; J. Bialek; A. Bondeson; A.H. Boozer;R.J. Buttery; A. Garofalo; T.P Goodman; R.S. Granetz; Y. Gribov; O. Gruber; M. Gryaznevich; G. Giruzzi; S. Günter; N. Hayashi; P. Helander; C.C. Hegna; D.F. Howell; D.A. Humphreys; G.T.A. Huysmans;A.W. Hyatt; A. Isayama; S.C. Jardin; Y. Kawano; A. Kellman; C. Kessel; H.R. Koslowski; R.J. La Haye; E. Lazzaro; Y.Q. Liu; V. Lukash; J. Manickam;S. Medvedev;V. Mertens; S.V. Mirnov; Y. Nakamura; G. Navratil; M. Okabayashi; T. Ozeki; R. Paccagnella; G. Pautasso; F. Porcelli; V.D. Pustovitov;V. Riccardo; M. Sato; O. Sauter; M.J. Schaffer;M. Shimada;P. Sonato;E.J. Strait;M. Sugihara; M. Takechi; A.D. Turnbull; E. Westerhof; D.G. Whyte; R. Yoshino; H. Zohm; (literal)
Pagina inizio
  • S128 (literal)
Pagina fine
  • S202 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
  • Review paper requested by the Editor (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 47 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#note
  • Issue 6 (literal)
Note
  • Scopu (literal)
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • T.C. Hender,EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK; J.C Wesley General Atomics, PO Box 85608, San Diego, California 92186-5608, USA; J. Bialek Columbia University, New York, New York 10027, USA; A. Bondeson EURATOM/VR Fusion Association, Chalmers University of Technology, Göteborg, Sweden; A.H. Boozer Columbia University, New York, New York 10027, USA; R.J. Buttery EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK; A. Garofalo Columbia University, New York, New York 10027, USA; T.P Goodman Ecole Polytechnique F´ed´erale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confédération Suisse, CH-1015 Lausanne, Switzerland; R.S. Granetz Massachusetts Institute of Technology, Plasma Science and Fusion Center, Cambridge, MA 02139, USA; Y. Gribov ITER Organization, Cadarache Centre, 13108 St Paul lez Durance, France; O. Gruber Max-Planck Institut f¨ur Plasmaphysik, EURATOM Association, D-85748 Garching, Germany; M. Gryaznevich EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK; G. Giruzzi Association Euratom-CEA, CEA Cadarache, F-13108 St Paul-lez-Durance, France; S. Günter Max-Planck Institut f¨ur Plasmaphysik, EURATOM Association, D-85748 Garching, Germany; N. Hayashi Japan Atomic Energy Agency, Naka, Ibaraki-ken, 311-0193, Japan; P. Helander Max-Planck Institut für Plasmaphysik, EURATOM Association, D-17491 Greifswald, Germany; C.C. Hegna Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; D.F. Howell EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK; D.A. Humphreys General Atomics, PO Box 85608, San Diego, California 92186-5608, USA; G.T.A. Huysmans Association Euratom-CEA, CEA Cadarache, F-13108 St Paul-lez-Durance, France; A.W. Hyatt General Atomics, PO Box 85608, San Diego, California 92186-5608, USA; A. Isayama Japan Atomic Energy Agency, Naka, Ibaraki-ken, 311-0193, Japan ; S.C. Jardin Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543, USA; Y. Kawano Japan Atomic Energy Agency, Naka, Ibaraki-ken, 311-0193, Japan; A. Kellman General Atomics, PO Box 85608, San Diego, California 92186-5608, USA; C. Kessel Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543, USA; H.R. Koslowski Forschungszentrum Jülich GmbH, Association EURATOM-FZ Jülich, Institut für Plasmaphysik, Trilateral Euregio Cluster, D-52425 Jülich, Germany; R.J. La Haye General Atomics, PO Box 85608, San Diego, California 92186-5608, USA; E. Lazzaro IFP CNR, Assoc. Euratom-ENEA-CNR, Via R. Cozzi 53, Milan, Italy; Y.Q. Liu EURATOM/VR Fusion Association, Chalmers University of Technology, Göteborg, Sweden; V. Lukash Nuclear Fusion Institute, Russian Research Centre 'Kurchatov Institute', Moscow, Russian Federation; J. Manickam Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543, USA ; S. Medvedev Keldysh Institute of Applied Mathematics, Moscow, Russian Federation; V. Mertens Max-Planck Institut f¨ur Plasmaphysik, EURATOM Association, D-85748 Garching, Germany; S.V. Mirnov State Research Centre TRINITI, Troitsk, Moscow Region, 142190 Russian Federation; Y. Nakamura Japan Atomic Energy Agency, Naka, Ibaraki-ken, 311-0193, Japan; G. Navratil Columbia University, New York, New York 10027, USA; M. Okabayashi Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543, USA; T. Ozeki Japan Atomic Energy Agency, Naka, Ibaraki-ken, 311-0193, Japan; R. Paccagnella Consorzio RFX, Assoc. Euratom-ENEA, I-35127 Padova, Italy; G. Pautasso Max-Planck Institut f¨ur Plasmaphysik, EURATOM Association, D-85748 Garching, Germany; F. Porcelli Burning Plasma Research Group, Politecnico di Torino, Torino 10129, Italy; V.D. Pustovitov Nuclear Fusion Institute, Russian Research Centre 'Kurchatov Institute', Moscow, Russian Federation; V. Riccardo EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK ; M. Sato Japan Atomic Energy Agency, Naka, Ibaraki-ken, 311-0193, Japan; O. Sauter Ecole Polytechnique F´ed´erale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confédération Suisse, CH-1015 Lausanne, Switzerland; M.J. Schaffer General Atomics, PO Box 85608, San Diego, California 92186-5608, USA; M. Shimada ITER Organization, Cadarache Centre, 13108 St Paul lez Durance, France; P. Sonato Consorzio RFX, Assoc. Euratom-ENEA, I-35127 Padova, Italy; E.J. Strait General Atomics, PO Box 85608, San Diego, California 92186-5608, USA; M. Sugihara ITER Organization, Cadarache Centre, 13108 St Paul lez Durance, France; M. Takechi Japan Atomic Energy Agency, Naka, Ibaraki-ken, 311-0193, Japan; A.D. Turnbull General Atomics, PO Box 85608, San Diego, California 92186-5608, USA; E. Westerhof FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein, Netherlands; D.G. Whyte Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; R. Yoshino Japan Atomic Energy Agency, Naka, Ibaraki-ken, 311-0193, Japan; H. Zohm Max-Planck Institut f¨ur Plasmaphysik, EURATOM Association, D-85748 Garching, Germany; (literal)
Titolo
  • Chapter 3: MHD stability, operational limits and disruptions (literal)
Abstract
  • Progress in the area of MHD stability and disruptions, since the publication of the 1999 ITER Physics Basis document (1999 Nucl. Fusion 39 2137-2664), is reviewed. Recent theoretical and experimental research has made important advances in both understanding and control of MHD stability in tokamak plasmas. Sawteeth are anticipated in the ITER baselineELMyH-mode scenario, but the tools exist to avoid or control them through localized current drive or fast ion generation. Active control of other MHD instabilities will most likely be also required in ITER. Extrapolation from existing experiments indicates that stabilization of neoclassical tearing modes by highly localized feedback-controlled current drive should be possible in ITER. Resistive wall modes are a key issue for advanced scenarios, but again, existing experiments indicate that these modes can be stabilized by a combination of plasma rotation and direct feedback control with non-axisymmetric coils. Reduction of error fields is a requirement for avoiding non-rotating magnetic island formation and for maintaining plasma rotation to help stabilize resistive wall modes. Recent experiments have shown the feasibility of reducing error fields to an acceptable level by means of non-axisymmetric coils, possibly controlled by feedback. The MHD stability limits associated with advanced scenarios are becoming well understood theoretically, and can be extended by tailoring of the pressure and current density profiles as well as by other techniques mentioned here. There have been significant advances also in the control of disruptions, most notably by injection of massive quantities of gas, leading to reduced halo current fractions and a larger fraction of the total thermal and magnetic energy dissipated by radiation. These advances in disruption control are supported by the development of means to predict impending disruption, most notably using neural networks. In addition to these advances in means to control or ameliorate the consequences of MHD instabilities, there has been significant progress in improving physics understanding and modelling. This progress has been in areas including the mechanisms governing NTM growth and seeding, in understanding the damping controlling RWMstability and in modelling RWMfeedback schemes. For disruptions there has been continued progress on the instability mechanisms that underlie various classes of disruption, on the detailed modelling of halo currents and forces and in refining predictions of quench rates and disruption power loads. Overall the studies reviewed in this chapter demonstrate that MHD instabilities can be controlled, avoided or ameliorated to the extent that they should not compromise ITER operation, though they will necessarily impose a range of constraints. (literal)
Prodotto di
Autore CNR

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
data.CNR.it