Structural properties of pulsed laser deposited SnO(x) thin films (Articolo in rivista)

Type
Label
  • Structural properties of pulsed laser deposited SnO(x) thin films (Articolo in rivista) (literal)
Anno
  • 2011-01-01T00:00:00+01:00 (literal)
Alternative label
  • Fazio E., Neri F., Ruggeri R., Sabatino G., Trusso S., Mannino G. (2011)
    Structural properties of pulsed laser deposited SnO(x) thin films
    in Applied surface science
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Fazio E., Neri F., Ruggeri R., Sabatino G., Trusso S., Mannino G. (literal)
Pagina inizio
  • 2520 (literal)
Pagina fine
  • 2525 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 257 (literal)
Rivista
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • 1. CNR, Ist Proc Chim Fis Sede Messina, I-98158 Messina, Italy 2. Univ Messina, Dipartimento Fis Mat & Ingn Elettron, I-98166 Messina, Italy 3. Univ Messina, Dipartimento Sci Terra, I-98166 Messina, Italy 4. CNR IMM Sez Catania, I-95121 Catania, Italy (literal)
Titolo
  • Structural properties of pulsed laser deposited SnO(x) thin films (literal)
Abstract
  • Nanocrystalline SnO(x) thin films were grown by means of pulsed laser deposition onto substrates held at relatively low temperature (470 K) and by varying the background oxygen gas pressure up to 66.7 Pa. The formation of the nanocrystalline structures in the films has been investigated in detail by using X-ray diffraction (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). The results showed that, upon increasing oxygen gas pressure up to 13.3 Pa, the laser induced plasma expands forming a shock wave and it is possible to obtain almost stoichiometric films composed of nanoparticles exceeding 10nm in size and essentially with a tetragonal rutile crystalline structure. Further increase of the oxygen pressure up to 66.7 Pa induces a worsening of the material's structural properties with a drastic reduction of the nanoparticles size down to 1 nmand the development of a large amount of an amorphous phase. The analysis of the SAED patterns shows that the unit cell shrinks along the principal crystallographic axes, due to oxygen atoms vacant sites, in agreement with the stoichiometry parameter values determined from X-ray core level photoemission spectroscopy measurements. (literal)
Prodotto di
Autore CNR

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
data.CNR.it