Mechanical behavior of polycyanurate-polyurethane sequential full-interpenetrating polymer networks (Articolo in rivista)

Type
Label
  • Mechanical behavior of polycyanurate-polyurethane sequential full-interpenetrating polymer networks (Articolo in rivista) (literal)
Anno
  • 2002-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1016/S0022-3093(02)01538-7 (literal)
Alternative label
  • Bartolotta A., Di Marco G., Lanza M., Carini G. D'Angelo G. Tripodo G. Fainleib A. Danilenko I. Sergeeva S. (2002)
    Mechanical behavior of polycyanurate-polyurethane sequential full-interpenetrating polymer networks
    in Journal of non-crystalline solids
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Bartolotta A., Di Marco G., Lanza M., Carini G. D'Angelo G. Tripodo G. Fainleib A. Danilenko I. Sergeeva S. (literal)
Pagina inizio
  • 698 (literal)
Pagina fine
  • 704 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 307-310 (literal)
Rivista
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • CNR IPCF UNIME Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, 02160 Kyiv, Ukraine (literal)
Titolo
  • Mechanical behavior of polycyanurate-polyurethane sequential full-interpenetrating polymer networks (literal)
Abstract
  • Differential scanning calorimetry and dynamic mechanical spectroscopy studies have been performed between 120 and 600 K in a new series of sequential full-interpenetrating polymer networks (full-IPNs) of crosslinked polyurethane and polycyanurate network (PCN), based on dicyanate ester of 1,1'-bis-4,cyanatophenyl-ethane. The measurements have revealed the existence of two distinct glass transitions in the thermograms and of relaxation losses given by the overlap of two alpha(a)-relaxations in the mechanical spectra whose temperature locations change with changing weight ratio of polymeric component. These observations indicate that the morphology of this new class of full-IPNs is based on double-phase structures characterized by weak interchain interactions. The interpenetration affects markedly the glass transition temperatures revealed in the pure components as a consequence of modifications in the local environments of the relaxing molecular units in the two phases. Below the glass transition, two secondary relaxation losses have been observed which have been ascribed to local molecular transitions within each polymeric component. The analysis of their concentration behaviors leads to a conclusion that the interpenetration process affects markedly the local motion of the PCN component. (C) 2002 Elsevier Science B.V. All rights reserved. (literal)
Prodotto di
Autore CNR

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
data.CNR.it