Potential-driven conductivity of polypyrroles, poly-n-alkylpyrroles, and polythiophenes: role of the pyrrole nh moiety in the doping-charge dependence of conductivity (Articolo in rivista)

Type
Label
  • Potential-driven conductivity of polypyrroles, poly-n-alkylpyrroles, and polythiophenes: role of the pyrrole nh moiety in the doping-charge dependence of conductivity (Articolo in rivista) (literal)
Anno
  • 2003-01-01T00:00:00+01:00 (literal)
Alternative label
  • Zotti G., Zecchin S., Schiavon G., Vercelli B., Berlin A., Dalcanale E., Groenendaal L.B. (2003)
    Potential-driven conductivity of polypyrroles, poly-n-alkylpyrroles, and polythiophenes: role of the pyrrole nh moiety in the doping-charge dependence of conductivity
    in Chemistry of materials
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Zotti G., Zecchin S., Schiavon G., Vercelli B., Berlin A., Dalcanale E., Groenendaal L.B. (literal)
Pagina inizio
  • 4642 (literal)
Pagina fine
  • 4650 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 15 (literal)
Rivista
Note
  • ISI Web of Science (WOS) (literal)
Titolo
  • Potential-driven conductivity of polypyrroles, poly-n-alkylpyrroles, and polythiophenes: role of the pyrrole nh moiety in the doping-charge dependence of conductivity (literal)
Abstract
  • The in situ conductivity vs p-doping charge of low-defect polypyrroles, N-substituted polypyrroles, and polythiophenes has been investigated in acetonitrile in the presence of the weakly coordinating perchlorate ion as supporting electrolyte. In-situ ESR and EQCM measurements have given supporting information on polymer structure and conduction carriers. The structures of the polymers cover a wide range of conjugative, geometrical, and solvation conditions, but the conductive pattern follows simply the polymer ring type (pyrrole, N-substituted pyrrole, or thiophene). In polythiophenes an initial region of low conductivity, due to strongly spin-dimerized polarons, is followed by an increase of conduction to a plateau of high conductivity. N-substituted polypyrroles display a linear increase of conductivity with charge followed by a plateau of conductivity. Polypyrroles without N-substitution show an increase of conductivity to a maximum followed by a symmetrical decrease to zero at a charge corresponding to one bipolaron per tetrapyrrole unit. A redox-type bipolaron model of conduction, based on stabilization of the bipolaron positive charge by H-bonding with the counteranion, is suggested. The parent polypyrrole shows the uncomplicated conductivity pattern (increase of conductivity to a plateau) due to a uniquely strong stabilization of the ð-stacked polymer chains. (literal)
Prodotto di
Autore CNR

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
data.CNR.it