Parallel disulfido bridges in bi- and poly-nuclear transition metal compounds: Bonding flexibility induced by redox chemistry (Articolo in rivista)

Type
Label
  • Parallel disulfido bridges in bi- and poly-nuclear transition metal compounds: Bonding flexibility induced by redox chemistry (Articolo in rivista) (literal)
Anno
  • 2008-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1016/j.ica.2008.03.060 (literal)
Alternative label
  • Mealli, Carlo; Ienco, Andrea; Messaoudi, Abdelatif; Poduska, Anne; Hoffmann, Roald (2008)
    Parallel disulfido bridges in bi- and poly-nuclear transition metal compounds: Bonding flexibility induced by redox chemistry
    in Inorganica Chimica Acta (Testo stamp.); Elsevier Science SA, Lausanne (Svizzera)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Mealli, Carlo; Ienco, Andrea; Messaoudi, Abdelatif; Poduska, Anne; Hoffmann, Roald (literal)
Pagina inizio
  • 3631 (literal)
Pagina fine
  • 3637 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 361 (literal)
Rivista
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • CNR, ICCOM, Ist Chim Composti Organomet, I-50019 Florence, Italy Cornell Univ, Baker Lab, Dept Chem & Chem Biol, Ithaca, NY 14853 USA (literal)
Titolo
  • Parallel disulfido bridges in bi- and poly-nuclear transition metal compounds: Bonding flexibility induced by redox chemistry (literal)
Abstract
  • We recently studied an elongated S(4)(2-) rectangle bridging transition metals such as Ir, Rh, Cu, or Fe and found that its formation is related to the oxidation of parallel S(2)(2-) molecules. The removal of two electrons can occur either externally or by an internal metal-ligand redox process that implies depopulation of the high-lying S(4) sigma(*) MO and population of a lower metal level. Thus, the interaction may be described as metal back-donation. However, sufficiently electropositive metals can more easily reach higher oxidation states and this reverses the direction of the two-electron interaction. In such a case, the system may be viewed as formed by two uncoupled disulfides donating an additional electron pair to the metals. In this paper, we analyze the aspects of the 2S(2)(2-)/S(4)(2-) dichotomy through DFT calculations and qualitative MO analysis of the known bimetallic MS(4)M cores having either triple-decker (TD) or chair-type structures. We correlate the extent of the disulfide coupling with the nature (electronegativity) of the terminal metal fragments (the metals range from Group IV to X) beside their electron configuration. We find that the formation of an S(4)(2-) unit is favored by metals which cannot stabilize high oxidation states (e. g. Fe(IV) or Cu(III)), whereas the two S(2)(2-) units remain substantially uncoupled with early transition metal in high oxidation states (e.g. Ti(IV)). (literal)
Editore
Prodotto di
Autore CNR

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Editore di
data.CNR.it