http://www.cnr.it/ontology/cnr/individuo/prodotto/ID153906
Numerical solution of a class of singular integral equations (Rapporti tecnici/preprint/working paper)
- Type
- Label
- Numerical solution of a class of singular integral equations (Rapporti tecnici/preprint/working paper) (literal)
- Anno
- 2009-01-01T00:00:00+01:00 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Capobianco M.R., Criscuolo G. (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
- Rapporto Tecnico IAC sede Napoli n.348/009 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#note
- Rapp.Tec.Iac sede Napoli n.348/009 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#supporto
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Maria Rosaria Capobianco, Istituto per le Applicazioni del Calcolo \"Mauro Picone\", CNR
Giuliana Criscuolo, Dipartimento di Matematica e Applicazioni Università degli studi di Napoli \"Federico II\" (literal)
- Titolo
- Numerical solution of a class of singular integral equations (literal)
- Abstract
- Capobianco, Criscuolo and Junghanns [2] have studied an integro differential equation of
Prandtl type
and a collocation method as well as a quadrature method for its approximate solution in weighted Sobolev spaces. Furthermore,
collocation and collocation quadrature methods for the same integral
equation have been studied in weighted spaces of continuous functions
[3]. The aim of the present paper is to present an algorithm related
to a numerical model for a hypersingular Integral equation arising in a solid circular plate problem, based on the collocation
methods with quadrature methods on orthogonal polynomials as in [2, 3]. The optimal convergence rates is proved. (literal)
- Prodotto di
- Autore CNR
Incoming links:
- Autore CNR di
- Prodotto