Numerical solution of a class of singular integral equations (Rapporti tecnici/preprint/working paper)

Type
Label
  • Numerical solution of a class of singular integral equations (Rapporti tecnici/preprint/working paper) (literal)
Anno
  • 2009-01-01T00:00:00+01:00 (literal)
Alternative label
  • Capobianco M.R., Criscuolo G. (2009)
    Numerical solution of a class of singular integral equations
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Capobianco M.R., Criscuolo G. (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
  • Rapporto Tecnico IAC sede Napoli n.348/009 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#note
  • Rapp.Tec.Iac sede Napoli n.348/009 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#supporto
  • Altro (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Maria Rosaria Capobianco, Istituto per le Applicazioni del Calcolo \"Mauro Picone\", CNR Giuliana Criscuolo, Dipartimento di Matematica e Applicazioni Università degli studi di Napoli \"Federico II\" (literal)
Titolo
  • Numerical solution of a class of singular integral equations (literal)
Abstract
  • Capobianco, Criscuolo and Junghanns [2] have studied an integro differential equation of Prandtl type and a collocation method as well as a quadrature method for its approximate solution in weighted Sobolev spaces. Furthermore, collocation and collocation quadrature methods for the same integral equation have been studied in weighted spaces of continuous functions [3]. The aim of the present paper is to present an algorithm related to a numerical model for a hypersingular Integral equation arising in a solid circular plate problem, based on the collocation methods with quadrature methods on orthogonal polynomials as in [2, 3]. The optimal convergence rates is proved. (literal)
Prodotto di
Autore CNR

Incoming links:


Autore CNR di
Prodotto
data.CNR.it