http://www.cnr.it/ontology/cnr/individuo/prodotto/ID134911
Efficient constructive techniques for training Switching Neural Networks (Contributo in volume (capitolo o saggio))
- Type
- Label
- Efficient constructive techniques for training Switching Neural Networks (Contributo in volume (capitolo o saggio)) (literal)
- Anno
- 2009-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1007/978-3-642-04512-7_2 (literal)
- Alternative label
E. Ferrari, M. Muselli (2009)
Efficient constructive techniques for training Switching Neural Networks
Springer-Verlag, Berlin (Germania) in Constructive Neural Networks, 2009
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- E. Ferrari, M. Muselli (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#citta
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#titoloVolume
- Constructive Neural Networks (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#volumeInCollana
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#note
- Volume: 258, Pagine: 25-48
Collana: Studies in Computational Intelligence
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#curatori
- L. Franco, D.A. Elizondo, J.M. Jerez (literal)
- Note
- ISI Web of Science (WOS) (literal)
- Scopu (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- E. Ferrari, M. Muselli: CNR-IEIIT, Italy (literal)
- Titolo
- Efficient constructive techniques for training Switching Neural Networks (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#inCollana
- Constructive Neural Networks (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
- 978-3-642-04511-0 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#curatoriVolume
- L. Franco, D.A. Elizondo, J.M. Jerez (literal)
- Abstract
- A general constructive approach for training neural networks in classification
problems is presented. This approach is used to construct a particular connectionist
model, named Switching Neural Network (SNN), based on the conversion
of the original problem in a Boolean lattice domain. The training of an SNN can
be performed through a constructive algorithm, called Switch Programming (SP),
based on the solution of a proper linear programming problem. Since the execution
of SP may require an excessive computational time, an approximate version of it,
named Approximate Switch Programming (ASP) has been developed. Simulation results
obtained on the StatLog benchmark show the good quality of the SNNs trained
with SP and ASP. (literal)
- Editore
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Editore di
- Insieme di parole chiave di