Predicting protein-protein interactions with k-Nearest Neighbors classification algorithm (Contributo in atti di convegno)

Type
Label
  • Predicting protein-protein interactions with k-Nearest Neighbors classification algorithm (Contributo in atti di convegno) (literal)
Anno
  • 2010-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1007/978-3-642-14571-1_10 (literal)
Alternative label
  • Mario Rosario Guarracino 1; Adriano Nebbia 1 (2010)
    Predicting protein-protein interactions with k-Nearest Neighbors classification algorithm
    in 6th International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2009), Genova, 2009
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Mario Rosario Guarracino 1; Adriano Nebbia 1 (literal)
Pagina inizio
  • 139 (literal)
Pagina fine
  • 150 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#titoloVolume
  • Computational Intelligence Methods for Bioinformatics and Biostatistics (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#volumeInCollana
  • 6160 (literal)
Note
  • ISI Web of Science (WOS) (literal)
  • Scopu (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • 1. CNR - Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR), Napoli, IT, Italia (literal)
Titolo
  • Predicting protein-protein interactions with k-Nearest Neighbors classification algorithm (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
  • 978-3-642-14570-4 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#curatoriVolume
  • Francesco Masulli; Leif E. Peterson; Roberto Tagliaferri (literal)
Abstract
  • In this work we address the problem of predicting proteinprotein interactions. Its solution can give greater insight in the study of complex diseases, like cancer, and provides valuable information in the study of active small molecules for new drugs, limiting the number of molecules to be tested in laboratory. We model the problem as a binary classification task, using a suitable coding of the amino acid sequences. We apply k-Nearest Neighbors classification algorithm to the classes of interacting and noninteracting proteins. Results show that it is possible to achieve high prediction accuracy in cross validation. A case study is analyzed to show it is possible to reconstruct a real network of thousands interacting proteins with high accuracy on standard hardware. (literal)
Editore
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Editore di
Insieme di parole chiave di
data.CNR.it