http://www.cnr.it/ontology/cnr/individuo/prodotto/ID133670
Predicting protein-protein interactions with k-Nearest Neighbors classification algorithm (Contributo in atti di convegno)
- Type
- Label
- Predicting protein-protein interactions with k-Nearest Neighbors classification algorithm (Contributo in atti di convegno) (literal)
- Anno
- 2010-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1007/978-3-642-14571-1_10 (literal)
- Alternative label
Mario Rosario Guarracino 1; Adriano Nebbia 1 (2010)
Predicting protein-protein interactions with k-Nearest Neighbors classification algorithm
in 6th International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2009), Genova, 2009
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Mario Rosario Guarracino 1; Adriano Nebbia 1 (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#titoloVolume
- Computational Intelligence Methods for Bioinformatics and Biostatistics (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#volumeInCollana
- Note
- ISI Web of Science (WOS) (literal)
- Scopu (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- 1. CNR - Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR), Napoli, IT, Italia (literal)
- Titolo
- Predicting protein-protein interactions with k-Nearest Neighbors classification algorithm (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
- 978-3-642-14570-4 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#curatoriVolume
- Francesco Masulli; Leif E. Peterson; Roberto Tagliaferri (literal)
- Abstract
- In this work we address the problem of predicting proteinprotein
interactions. Its solution can give greater insight in the study of
complex diseases, like cancer, and provides valuable information in the
study of active small molecules for new drugs, limiting the number of
molecules to be tested in laboratory. We model the problem as a binary
classification task, using a suitable coding of the amino acid sequences.
We apply k-Nearest Neighbors classification algorithm to the classes of
interacting and noninteracting proteins. Results show that it is possible
to achieve high prediction accuracy in cross validation. A case study is
analyzed to show it is possible to reconstruct a real network of thousands
interacting proteins with high accuracy on standard hardware. (literal)
- Editore
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Editore di
- Insieme di parole chiave di