Knotting of random ring polymers in confined spaces (Articolo in rivista)

Type
Label
  • Knotting of random ring polymers in confined spaces (Articolo in rivista) (literal)
Anno
  • 2006-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1063/1.2162886 (literal)
Alternative label
  • Micheletti, C (1); Marenduzzo, D (2); Orlandini, E (3); Summers, DW (4) (2006)
    Knotting of random ring polymers in confined spaces
    in The Journal of chemical physics
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Micheletti, C (1); Marenduzzo, D (2); Orlandini, E (3); Summers, DW (4) (literal)
Pagina inizio
  • 064903-1 (literal)
Pagina fine
  • 064903-10 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 124 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 10 (literal)
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • (1) Scuola Int Super Studi Avanzati, SISSA, I-34100 Trieste, Italy; INFM, I-34100 Trieste, Italy; (2) Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England; (3) Univ Padua, Dipartimento Fis, I-35121 Padua, Italy; Univ Padua, Sez INFN, I-35121 Padua, Italy; (4) Florida State Univ, Dept Math, Tallahassee, FL 32306 USA (literal)
Titolo
  • Knotting of random ring polymers in confined spaces (literal)
Abstract
  • Stochastic simulations are used to characterize the knotting distributions of random ring polymers confined in spheres of various radii. The approach is based on the use of multiple Markov chains and reweighting techniques, combined with effective strategies for simplifying the geometrical complexity of ring conformations without altering their knot type. By these means we extend previous studies and characterize in detail how the probability to form a given prime or composite knot behaves in terms of the number of ring segments N and confining radius R. For 50 <= N <= 450 we show that the probability of forming a composite knot rises significantly with the confinement, while the occurrence probability of prime knots are, in general, nonmonotonic functions of 1/R. The dependence of other geometrical indicators, such as writhe and chirality, in terms of R and N is also characterized. It is found that the writhe distribution broadens as the confining sphere narrows. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it