Highly conductive Redox protein-Carbon Nanotube Complex for Biosensing Applications (Articolo in rivista)

Type
Label
  • Highly conductive Redox protein-Carbon Nanotube Complex for Biosensing Applications (Articolo in rivista) (literal)
Anno
  • 2011-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1002/adfm.201001650 (literal)
Alternative label
  • C. Baldacchini; M. A. Herrero Chamorro; M. Prato; S. Cannistraro (2011)
    Highly conductive Redox protein-Carbon Nanotube Complex for Biosensing Applications
    in Advanced functional materials (Print)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • C. Baldacchini; M. A. Herrero Chamorro; M. Prato; S. Cannistraro (literal)
Pagina inizio
  • 153 (literal)
Pagina fine
  • 157 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 21 (literal)
Rivista
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Biophysics and Nanoscience Centre and CNISM, Facoltà di Scienze, Università della Tuscia, Largo dell'Università 01100 Viterbo, Italy Institute of Agro-environmental and Forest Biology - IBAF, National Research Council - CNR, Via Marconi 2, 05010 Porano, TR, Italy Dipartimento di Scienze Farmaceutiche, Università di Trieste, Piazzale Europa 1, 34127 Trieste, Italy (literal)
Titolo
  • Highly conductive Redox protein-Carbon Nanotube Complex for Biosensing Applications (literal)
Abstract
  • The integration of redox proteins with nanomaterials has attracted much interest in the past years, and metallic single-walled carbon nanotubes (SWNTs) have been introduced as effi cient electrical wires to connect biomolecules to metal electrodes in advanced nano-biodevices. Besides preserving biofunctionality, the protein-nanotube connection should ensure appropriate molecular orientation, fl exibility, and effi cient, reproducible electrical conduction. In this respect, yeast cytochrome c redox proteins are connected to gold electrodes through lying-down functionalized metallic SWNTs. Immobilization of cytochromes to nanotubes is obtained via covalent bonding between the exposed protein thiols and maleimide-terminated functional chains attached to the carbon nanotubes. A single-molecule study performed by combining scanning probe nanoscopies ascertains that the protein topological properties are preserved upon binding and provides unprecedented current images of single proteins bound to carbon nanotubes that allow a detailed I - V characterization. Collectively, the results point out that the use as linkers of suitably functionalized metallic SWNTs results in an electrical communication between redox proteins and gold electrodes more effi cient and reproducible than for proteins directly connected with metal surfaces. (literal)
Prodotto di
Autore CNR

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
data.CNR.it